Abstract

New classes of hybrid polymer networks (HPNs), having variable polyurethane acrylate (PUA) and epoxy–amine acrylate (EAA) compositions, were prepared using initially miscible systems in methyl methacrylate (MMA). The initial systems were based on PUA prepolymer and EAA monomer solutions in MMA. HPNs were a result of epoxy–amine and radical polymerization competition. Phase separation occurred during the course of HPN formation. Mechanical dynamic analysis of the prepared HPNs showed good affinity between the PUA and PMMA phases and lower affinity between the EAA and PMMA phases. Mechanical property evolution and transmission electronic microscopy showed that, for all the composition ranges used in this study (PUA/EAA/PMMA 15/45/40–45/15/40 wt %), the PUA-rich phase was the continuous phase. EAA-rich phases, 20–50 nm, in the PUA-rich matrix were obtained for HPNs containing up to 30 wt % EAA. For higher EAA concentration (45 wt %), 2 μm EAA-rich phases were obtained in the PUA-rich matrix. A substructure was also observed in each phase. PUA/EAA copolymers were prepared and used successfully for the compatibilization of the different phases of the HPNs. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2711–2717, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.