Abstract
Total polar lipid extracts of chloroplasts isolated from broad beans ( Vicia faba) tend to form non-bilayer structures when dispersed in dilute salt solutions. Monoglactosyldiacylglycerol is shown to play a dominant role in this process. The tendency of this lipid to form non-bilayer structures when dispersed alone in water was found to depend upon the degree of unsaturation of its associated fatty acyl chains. Highly unsaturated lipids (average number of double bonds per lipid molecule greater than about 5.0) form inverted hexagonal (Hex II) structures in water at 20°C, whilst more saturated lipids (average number of double bonds per lipid molecule less than about 4.5) form lamellar sheets. Wide-angle X-ray diffraction and differential scanning calorimetry measurements indicate that these lamellae consist of gel-phase lipid that can adopt either of two structures depending on the thermal history of the sample. Freeze-fracture studies performed on total polar lipid extracts that have been hydrogenated using Adams' catalyst, and reconstituted extracts in which monogalactosyldiacylglycerol has been selectively hydrogenated, show that the degree of unsaturation of this lipid is a key factor in determining whether or not non-bilayer structures are formed in such extracts. Increasing the extent of saturation of the acyl residues of monogalactosyldiacylglycerol reduces the tendency to form non-bilayer structures. Similar effects are observed on lowering the temperature of the dispersions. Fluorescence polarisation measurements using 1,6-diphenyl-1,3,5-hexatriene indicate that the disappearance of non-bilayer structures is accompanied by a marked decrease in the fluidity of the lipid matrix. The possible significance of these observations is discussed in terms of the thermal adaptation and chilling sensitivity of plant membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.