Abstract

Polyunsaturated fatty acids (PUFAs) exert inhibitory effects on T cell-mediated immune responses. Activation of T cells in vivo depends on formation of an immunological synapse (IS) at the T cell/antigen-presenting cell (APC) interface. Here, we analyzed effects of PUFA treatment on the formation of the IS and APC-induced human T cell activation. In T cells treated with the PUFA eicosapentaenoic (EPA; 20:5,n-3) and arachidonic acid (20:4,n-6), stimulated by superantigen-presenting cells or APCs, relocalization to the IS of distinct molecules [F-actin, talin, leukocyte functional antigen-1alpha, clusters of differentiation (CD)3epsilon] was inhibited markedly compared with cells treated with saturated fatty acid, whereas relocalization of protein kinase Ctheta to the IS remained unaffected. CD3-induced, sustained phosphorylation of nucleotide exchange factor Vav, which controls cytoskeletal rearrangements underlying IS formation, was significantly reduced in EPA-treated Jurkat and peripheral blood T cells. In addition, T cell raft disruption by methyl-beta-cyclodextrin treatment and experiments with a chimeric linker for activation of T cell proteins, which is resistant to PUFA effects on lipid rafts, revealed modifications of lipid rafts as a crucial factor for PUFA-mediated inhibition of APC-stimulated cytoskeletal rearrangements. Furthermore, the efficiency of T cell/APC conjugate formation was significantly reduced with EPA-treated T cells, as was stimulation of CD69 expression, which is not altered following antibody-mediated T cell activation. In conclusion, PUFA treatment of T cells qualitatively and quantitatively alters IS formation, thereby extending T cell signaling defects to pathways that are not intrinsically altered in PUFA-treated T cells when stimulated by antibodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.