Abstract

AbstractThe present study provides an example of the accurate identification of polytypes of trioctahedral 1:1 layered silicates from single-crystal X-ray diffraction data collected with the aid of a four-circle diffractometer equipped with an area detector. Single crystals of the mineral cronstedtite from the Nagybörzsöny gold ore deposit, northern Hungary, were studied. The chemical composition of some crystals was determined by electron probe microanalysis (EPMA). The precession-like images of the reciprocal space (RS) sections created by the diffractometer software and presented in the study were used to determine the OD (ordered-disordered) subfamilies (Bailey’s groups A, B, C, D) and particular polytypes. With one exception, all crystals studied belong to subfamily A. The rare polytype 1M, a = 5.51, b = 9.54, c = 7.33 Å, β = 104.5°, space group Cm is relatively abundant in this occurrence. Another polytype 3T, a = 5.51, c = 21.32 Å, space group P31 was also found. Both polytypes occur separately or in mixed, mostly 1M dominant crystals. Some 1M polytype crystals are twinned by order 3 reticular merohedry with a 120° rotation along the chex axis as the twin operation. A rare 1M+3T mixed crystal with 1M part twinned also contains a small amount of subfamily C. A possible presence of the most common 1T polytype of this subfamily cannot be confirmed because of overlap of the characteristic reflections with those of 3T. Several completely disordered crystals produced diffuse streaks instead of discrete characteristic reflections on the RS sections. The EPMA revealed Fe, Si, traces of Mg, Al, S, and Cl. One black crystal originally considered to be cronstedtite was identified as (111) twinned sphalerite. Some crystals of cronstedtite are covered partially by a honey-brown crust or small crystals of siderite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.