Abstract

Temperature-dependent microstructural evolution of hexagonal WO3 (h-WO3) polytypes is explored via ab initio molecular dynamics calculations within the density-functional theory framework. We present simulated finite temperature radial distribution function and X-ray diffraction patterns to reinterpret recent experimental pair distribution function analysis. This work clearly demonstrates that after a more careful analysis of the finite temperature structural properties of h-WO3, an intermediate H1-like structure is predicted at higher temperatures, while the more stable H4 polytype (and not the experimentally suggested H2 polytype) is obtained nearer ambient temperatures. This is further corroborated by our electronic structure analysis which shows that the electronic band gap energy of the ambient temperature H4-like structure agrees much better with the experimentally reported band gap energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.