Abstract

We report on the optical characterization of single (Zn,Cd)Se quantum dots (QDs) embedded in vapor-liquid-solid-grown ZnSe nanowires (NWs). The temperature dependent quenching of the QD luminescence demonstrates that their electronic structure is comparable to that of self-assembled (Zn,Cd)Se QDs in ZnSe matrices. The photoluminescence excitation (PLE) spectrum of single nanowire QDs reveals the presence of both zinc blende (ZB) and wurtzite (WZ) crystal modifications of ZnSe in the NW shafts. PLE provides, therefore, a complementary technique to transmission electron microscopy imaging to reveal polytypism in ZnSe NWs. A transient quenching of the PL emission suggests a type II staggered band alignment at the ZB/WZ interface in our ZnSe NWs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call