Abstract

Hilbert space frames generalize orthonormal bases to allow redundancy in representations of vectors while keeping good reconstruction properties. A frame comes with an associated frame operator encoding essential properties of the frame. We study a polytope that arises in an algorithm for constructing all finite frames with given lengths of frame vectors and spectrum of the frame operator, which is a Gelfand-Tsetlin polytope. For equal norm tight frames, we give a non-redundant description of the polytope in terms of equations and inequalities. From this we obtain the dimension and number of facets of the polytope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.