Abstract
The problem of deciding if a given triangulation of a sphere can be realized as the boundary sphere of a simplicial, convex polytope is known as the ‘Simplicial Steinitz problem’. It is known by an indirect and non-constructive argument that a vast majority of Bier spheres are non-polytopal. Contrary to that, we demonstrate that the Bier spheres associated to threshold simplicial complexes are all polytopal. Moreover, we show that all Bier spheres are starshaped. We also establish a connection between Bier spheres and Kantorovich–Rubinstein polytopes by showing that the boundary sphere of the KR-polytope associated to a polygonal linkage (weighted cycle) is isomorphic to the Bier sphere of the associated simplicial complex of “short sets”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.