Abstract

Applications of standard item response theory models assume local independence of items and persons. This paper presents polytomous multilevel testlet models for dual dependence due to item and person clustering in testlet-based assessments with clustered samples. Simulation and survey data were analysed with a multilevel partial credit testlet model. This model was compared with three alternative models - a testlet partial credit model (PCM), multilevel PCM, and PCM - in terms of model parameter estimation. The results indicated that the deviance information criterion was the fit index that always correctly identified the true multilevel testlet model based on the quantified evidence in model selection, while the Akaike and Bayesian information criteria could not identify the true model. In general, the estimation model and the magnitude of item and person clustering impacted the estimation accuracy of ability parameters, while only the estimation model and the magnitude of item clustering affected the item parameter estimation accuracy. Furthermore, ignoring item clustering effects produced higher total errors in item parameter estimates but did not have much impact on the accuracy of ability parameter estimates, while ignoring person clustering effects yielded higher total errors in ability parameter estimates but did not have much effect on the accuracy of item parameter estimates. When both clustering effects were ignored in the PCM, item and ability parameter estimation accuracy was reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.