Abstract

Nanovaccine can elicit antigen-specific immune responses against tumor cells expressing homologous antigens and has attracted enormous attention in cancer immunotherapy. However, tumor heterogeneity remarkably hinders the development of nanovaccines. Here we demonstrate that PTT-induced in situ vaccination cancer therapy can elicit potent antitumor immunity against disseminated and metastatic tumors. Gold nanorods (AuNRs) covalently coupled with amphiphilic polyTLR7/8a and MMP-2-sensitive R9-PEG conjugate (AuNRs-IMQD-R9-PEG) were developed as a new biocompatible PTT agent with favorable photothermal efficiency and stability. Importantly, AuNRs-IMQD-R9-PEG can effectively absorb tumor-derived protein antigens, forming nanovaccines directly in vivo and enhance the activation of host dendritic cells (DCs), thereby amplifying adaptive antitumor T-cell responses, triggering effector memory immune responses, and activating innate antitumor immunity. Remarkably, peri-tumoral administration of low-dose multifunctional AuNRs followed by non-invasive near-infrared (NIR) laser irradiation enables efficient tandem PTT-vaccination treatment modality that can inhibit local as well as untreated distant and metastatic tumors in mice inoculated with poorly immunogenic, highly metastatic 4T1 tumors. Our findings indicate that AuNRs-IMQD-R9-PEG-mediated in situ cancer vaccination provides a powerful immunotherapy characterized by markedly increased infiltration of effector CD8+ T, natural killer T (NKT) cells in tumors and long-term animal survival, thus, offering a promising therapeutic strategy for advanced, disseminated cancers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.