Abstract
In this work, we demonstrate a simple method of synthesizing nanoscale polythiophene-gold nanoparticle (AuNP) hybrid systems assembled by the Langmuir-Blodgett (LB) method. Regio-regular poly(3-(2-methoxyethoxy)ethoxymethyl)thiophene-2,5-diyl (PMEEMT) and poly(3-dodecylthiophene) (PDDT) were employed as the polymeric constituents. The presence of PDDT improved the amphiphilicity of PMEEMT by addressing the phase separation that occurred due to convective hydrodynamic instability on the substrate. 4 layer stacks of 90% and 99% PMEEMT films exhibited uniform film structure with a significant reduction in phase separation. A detailed mechanism for minimization of the surface effect has been proposed based on the interaction of polythiophenes with the substrate. For the first time, an ex situ approach has been adopted to incorporate AuNPs into LB films without affecting the film morphology and uniformity. The incorporation of AuNPs into the polythiophene matrix, aided by the affinity of sulphur for gold, was strongly dependent on the molecular arrangement of the matrix, which in turn depended on the composition of the matrix. The hybrid polythiophene films exhibited enhanced conductivity and can be applied in sensors, photovoltaics and memory devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.