Abstract

A polythiophene derivative with the simplest conjugated side chain, poly(3-hexy-1-enylthiophene) (P3HET), was synthesized by Stille self-coupling reaction. A comparative study of the newly synthesized polymer with poly(3-hexylthiophene) (P3HT), one of the most widely investigated optoelectronic materials, is presented. The effect of double bond (C=C) on the side chain toward thermal stability and optical and electronic properties was fully characterized by TGA, UV-vis absorption spectroscopy, photoluminescence spectroscopy, and cyclic voltammetry. The hole mobility of P3HET determined by the space-charge-limited current (SCLC) model is 6.7 x 10(-3) cm(2)/V s, which is comparable to P3HT with similar molecular weight and regularity and 1 order of magnitude higher than most conjugated-side-chain polythiophene derivatives. Polymer solar cells (PSCs) and field effect transistors (FETs) were fabricated respectively to exploit its potential applications in optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.