Abstract

Polyterthiophene has been investigated as a substrate for the controlled release of dexamethasone, a synthetic glucocorticoid anti-inflammatory drug, which is widely used to help reduce inflammation in the central nervous system. Dexamethasone was incorporated into the polymer as an anionic dopant during electrochemical polymerisation from water–acetonitrile solutions. Optimal polymer synthesis conditions were established to yield reproducible dexamethasone release profiles into a simulated physiological receiving solution. A homogeneous morphology of the polyterthiophene substrate with minimal extraneous features was observed to be critical for achieving reproducibility of release. Release profiles were established using a range of electrochemical stimulation protocols over a 24 h time period. The amount of dexamethasone released from the polyterthiophene under all electrostimulation protocols was at therapeutically relevant levels, with a maximum release of ∼80 μg/cm 2 achieved when the polymer film was in a reduced state. The oxidation state of the polyterthiophene was found to be critical for controlled release of the dexamethasone. Polyterthiophene doped with dexamethasone was observed to auto-reduce when placed into the receiving solution. As a consequence, no significant difference was observed between the unstimulated (auto-reduced) polymer and the electrochemically reduced polyterthiophene. By electrochemically holding the polyterthiophene in the oxidised state, the rate of release of dexamethasone was significantly impeded with ∼40 μg/cm 2 released over a 24 h period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.