Abstract

The tetracyclic sterol precursors, cyclolaudenol, cycloartenol and lanosterol, inhibit efficiently the tetrahymanol biosynthesis in the ciliate Tetrahymena pyriformis, as reported earlier for cholesterol and other sterols. The prokaryotic bacteriohopanetetrols have little effect, and diplopterol, another hopanoid, as well as the carotenoid, canthaxanthin, have no effect. In the presence of triparanol, a hypocholesterolemic drug inhibiting the squalene cyclase of T. pyriformis and modifying the fatty acid metabolism, the cells do not grow further, but growth can be restored by the addition to the culture medium of suitable polyterpenoids. Thus, growth in presence of triparanol (13 μM) is almost normal after addition of a sterol such as sitosterol and cyclolaudenol, and longer lag times and lower absorbances than those of untreated cultures are observed in presence of cyclartenol, lanosterol, euphenol (a lanosterol isomer), bacteriohopanetetrols and three carotenoids. No growth at all is observed in the presence of tetrahymanol and diplopterol, although these triterpenoids are the normal reinforcers of the ciliate, probably because of a poor bioavailability. Thus, structurally different polyterpenoids are (at least partially) functionally equivalent and capable of replacing tetrahymanol or sterols and might act as membrane reinforcers in T. pyriformis cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.