Abstract
Chironomids are a ubiquitous group of aquatic insects that are very sensitive to environmental stress. Due to the presence of polytene (‘giant’) salivary gland chromosomes, it is possible to define the genome response of several Chironomid species to various stress agents. The aim of this study was to assess the genotoxic changes in populations of widely distributed chironomid species from aquatic basins in Bulgaria, Italy, Russia, U.K. and Poland, which were exposed to high concentrations of trace metals. We analyzed the structural and functional alterations of polytene chromosomes of the salivary glands of larvae belonging to three different cytocomplexes of the genus Chironomus (“thummi”, “lacunarius”, “pseudothummi”), and genera Glyptotendipes and Kiefferulus. Somatic structural chromosome rearrangements (para- and pericentric heterozygous inversions, deletions, deficiencies and amplifications) were used to estimate a Somatic index (S) for each population. The highest S indexes were detected in Chironomus riparius populations from locations with high concentrations of trace metals in the sediment. Each species showed specific genome responses to stress agents which we discussed in the light of the specific DNA structures and cytogenetic characteristics of the species. In larvae from polluted sediments two key structures of the salivary gland chromosomes (Balbiani Rings and Nucleolar Organizer) sharply reduced their activity to levels below those observed under non-polluted conditions. It is concluded that polytene chromosomes can be used as tools for evaluating the genotoxicity of the aquatic environment. Structural and functional chromosome alterations provide cost-effective early-warning signals of genotoxic concentrations of environmental pollutants.doi: 10.5324/fn.v31i0.1355.Published online: 17 October 2012.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Fauna norvegica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.