Abstract
The polysymplectic formulation of the CMPR action, which is a BF-type formulation of general relativity that involves an arbitrary Immirzi parameter, is performed. We implement a particular scheme within this covariant Hamiltonian approach to analyze the constraints that characterize the CMPR model. By means of the privileged -forms and the Poisson–Gerstenhaber bracket, inherent to the polysymplectic framework, the BF field equations associated to the CMPR action are obtained and, in consequence, the Einstein equations naturally emerge by solving the simplicity constraints of the theory. Further, from the polysymplectic analysis of the CMPR action the De Donder–Weyl Hamiltonian formulation of the Holst action is recovered, which is consistent with the Lagrangian analysis of this model as reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.