Abstract

Zeolite-templated carbon (ZTC) was used as a new nanoporous filler to prepare mixed-matrix membranes (MMMs) with polysulfone as a continuous phase. The ZTC was prepared using a synthesized zeolite-Y template and sucrose carbon source via the impregnation method. The MMMs were fabricated through a dry-jet wet spinning technique, and the ZTC loadings were varied between 0.4–0.7wt%. The results showed that the integration of the ZTC did not change the microscopic structure of membranes. Additionally, the addition of filler did not affect the amorphous character of the polymer, while the polymer chain spacing slightly decreased. The thermal stability of MMMs improved with an increase in the glass transition temperature. The MMM at 0.4wt% loading exhibited the best separation performances as shown from the Robeson curve, with CH4, CO2, N2, O2, and H2 permeances of 5.9, 58.5, 5.0, 14.0, and 169.2 GPU, respectively. In addition, the improvements in CO2/CH4, O2/N2, H2/CH4, and CO2/N2 ideal selectivities were 290%, 117%, 272%, and 219%, respectively. On the other hand, the enhancement of the permeances and reduction in selectivities observed at 0.7wt% loading indicated that the existence of voids was a main factor in the permeation behavior of the MMMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.