Abstract
An effort for better understanding of main parameters influence to polystyrene thin films treatment under DC point-to-plane low-pressure discharge in nitrogen is attempted. Voltage-current curves and discharge repetitive current impulses for various gap lengths and gas pressures, in absence and in presence of polystyrene thin films in the cold plasma reactor, evidence that in any case a normal glow discharge regime is established. Atactic polystyrene thin films underlie treatment under the above regime and hydrophilic surfaces are obtained. Wettability is characterized, under certain experimental protocols, by contact angle measurements along the films treated for various gap lengths (d = 0.5, 1, 2 cm), gas pressures (p = 2-10 mbar), gas flow rates (Q = 1-1110$ sccm) and times (ttr = 0-600 s). The best treatment takes place opposite to the point electrode, in an area around the discharge symmetry axis, proving non-homogeneous surface treatment. Atomic Force Microscopy (AFM) shows that this fact does not relate to surface morphological changes. The experimental results confirm that the above treatment yields polystyrene films with very good wettability (typical contact angles: 5-15°) avoiding any obvious material degradation. Ageing effects are introduced but the final wettability in comparison to that before the treatment is increased. The role of excited neutrals and reactive particles with long radiative lifetime (metastables states) is emphasized and seems to lead to polymer treatment through diffusion mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.