Abstract

Litopenaeus vannamei were exposed to 80-nm polystyrene nanoplastics (NPs) at different concentrations (0, 0.1, 1, 5, and 10 mg/L) for 28 days to study the effects on muscle nutritional quality. Our results showed that with increasing NPs concentrations, the survival rate, specific gain rate, and protein efficiency ratio decreased but the feed conversion ratio increased. There was no significant difference in moisture, ash, and crude lipid content in the muscle, and a general decrease in crude protein content was observed. However, the total amino acid and semi-essential amino acid contents decreased. The spacing between muscle fibers and the melting morphology of muscle increased. The hardness of muscle flesh texture increased, but springiness, cohesiveness, and chewiness decreased. Regarding antioxidant enzyme activity, the activity of catalase decreased, but the total antioxidant capacity, superoxide dismutase activity, and reduced glutathione first increased and then decreased. The expression level of the growth-related genes retinoid X receptor (RXR), chitin synthase (CHS), and calmodulin A (CaM) first increased then decreased, but calcium/calmodulin-dependent protein kinase I (CaMKI), ecdysteroid receptor (EcR), chitinase 5 (CHT5), cell division cycle 2 (Cdc2), and cyclin-dependent kinase 2 (CDK2) decreased. Our results suggest that exposure to NPs can inhibit growth by inducing oxidative stress, which leads to muscle tissue damage and changes in amino acid composition. These results will provide a theoretical reference for the risk assessment of NPs and the ecological health aquaculture of shrimp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.