Abstract

Polystyrene nanoparticles (PNP) cross rat alveolar epithelial cell monolayers via non-endocytic transcellular pathways. To evaluate epithelial cell type-specificity of PNP trafficking, we studied PNP flux across Madin Darby canine kidney cell II monolayers (MDCK-II). The effects of calcium chelation (EGTA), energy depletion (sodium azide (NaN 3) or decreased temperature), and endocytosis inhibitors methyl-β-cyclodextrin (MBC), monodansylcadaverine and dynasore were determined. Amidine-modified PNP cross MDCK-II 500 times faster than carboxylate-modified PNP. PNP flux did not increase in the presence of EGTA. PNP flux at 4°C and after treatment with NaN 3 decreased 75% and 80%, respectively. MBC exposure did not decrease PNP flux, whereas dansylcadaverine- or dynasore-treated MDCK-II exhibited ∼80% decreases in PNP flux. Confocal laser scanning microscopy revealed intracellular colocalization of PNP with clathrin heavy chain. These data indicate that PNP translocation across MDCK-II (1) occurs via clathrin-mediated endocytosis and (2) is dependent on PNP physicochemical properties. We conclude that uptake/trafficking of nanoparticles (NPs) into/across epithelia depends both on properties of the NPs and on the specific epithelial cell type. From the Clinical Editor This basic science study investigates the membrane translocation of polystyrene nanoparticles (PNP) via an epithelial cell monolayer utilizing canine kidney cells. The authors conclude that translocation occurs via clathrin-mediated endocytosis and is dependent on the physicochemical properties of the particular PNP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call