Abstract

Polystyrene (PS) electrospun nanofibers were prepared via electrospinning for the adsorption of clonazepam from aqueous solution. The adsorption conditions such as adsorption time, solution pH and the amount of adsorbent were optimized. The adsorption kinetics and thermodynamic properties of clonazepam on PS nanofibers were studied under optimized conditions. The pseudo-second-order kinetic model can fit well the adsorption process of clonazepam on polystyrene nanofibers, indicating that the diffusion process in the fiber is the rate-limiting step of the adsorption process. The adsorption equilibrium data are in accordance with the Freundlich isotherm model, and the maximum adsorption capacity is 3.2 mg g−1. Thermodynamic studies revealed that the adsorption process is endothermic and spontaneous in nature. It was suggested that PS electrospun nanofibers have good potential for the separation and purification of clonazepam from a water-soluble matrix as a novel effective adsorbent material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.