Abstract

Today, we stand at the edge of exploring carbon nanotube (CNT) and graphene based polymer nanocomposites as next generation multifunctional materials. However, irrespective of the methods of composite preparation, development of electrical conductivity with high electromagnetic interference (EMI) value at very low loading of CNT and (or) graphene is limited due to poor dispersion of these nanofillers in polymer matrix. Here, we demonstrate a novel technique that involves in-situ polymerization of styrene/multiwalled carbon nanotubes (MWCNTs) in the presence of suspension polymerized polystyrene (PS)/graphite nanoplate (GNP) microbeads, for the preparation of electrically conducting PS/MWCNT/GNP nanocomposites with very high (~20.2 dB) EMI shielding value at extremely low loading of MWCNTs (~2 wt %) and GNP (~1.5 wt %). Finally, through optimizing the ratio of PS-GNP bead and MWCNTs in the nanocomposites, an electrical conductivity of ~9.47 × 10(-3) S cm(-1) was achieved at GNP and MWCNTs loading of 0.29 and 0.3 wt %, respectively. The random distribution of the GNPs and MWCNTs with GNP-GNP interconnection through MWCNT in the PS matrix was the key factor in achieving high electrical conductivity and very high EMI shielding value at this low MWCNT and GNP loadings in PS/MWCNT/GNP nanocomposites. With this technique, the formation of continuous conductive network structure of CNT-GNP-CNT and the development of spatial arrangement for strong π-π interaction among the electron rich phenyl rings of PS, GNP, and MWCNT could be possible throughout the matrix phase in the nanocomposites, as evident from the field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call