Abstract
Microplastics have been recognized as a widespread new pollutant in nature and have induced an increase in the occurrence of a variety of diseases in carp. An animal model of microplastic ingestion was successfully established in an aqueous environment. The gut microbiota was analysed using a metagenomic approach. The results showed a significant reduction in the relative abundances of Lactococcus garvieae, Bacteroides_paurosaccharolyticus, and Romboutsia_ilealis after PS-MPs treatment. The 16S Silva database was used to predict and analyse the known genes. Intestinal flora disorders related to infectious diseases, cancers, neurodegenerative diseases, endocrine and metabolic diseases, cardiovascular diseases, and other diseases were found. The intake of PS-MPs resulted in damage to carp intestinal tissue and apoptosis of intestinal epithelial cells. The levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α were significantly increased with the intake of PS-MPs. The gene and protein levels of GRP78, Caspase-3, Caspase-7, Caspase-9, Caspase-12, PERK, IRE1, and ATF6 were further examined in PS group. The occurrence of ERS and apoptosis in carp intestines was confirmed. These results suggest that the accumulation of PS-MPs in the aquatic environment can disturb the carp gut microbiota and induce ERS, apoptosis, and inflammation in the intestinal tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.