Abstract
Microplastics are ubiquitous in the aquatic and terrestrial ecosystem, increasingly becoming a serious concern for aquatic organism health. However, information regarding the effects of microplastics on cephalopods is remain limited to date. Amphioctopus fangsiao, an important economic species in cephalopods, can serve as a potential indicator of environmental pollution due to its short life expectancy and high metabolic rates. Here, to explore the toxic effects during the microplastic stress response, we analyzed the growth performance, histopathological damage, oxidative stress biomarkers, metabolomic and transcriptomic response in digestive gland of A. fangsiao under different concentrations (0, 100 and 1000 μg/L) of commercial polystyrene microplastics (MPS) exposure (5 μm, sphere) for 21 days. The results showed that MPS exerted a huge influence on the growth performance of A. fangsiao. The oxidative stress and inflammation in digestive gland of A. fangsiao were also detected after exposure to MPS. In addition, most of the altered metabolites observed in the metabolic analysis were related to inflammation, oxidative stress and glucolipid metabolism. Transcriptome analysis detected the differentially expressed genes (DEGs) and the significantly enriched KEGG pathways associated with glycolipid metabolism, inflammation and DNA damage. Collectively, our results indicate that excessive environmental microplastic exposure will cause toxicity damage and then initiate the detoxification mechanism in A. fangsiao digestive gland to maintain homeostasis. This study revealed that microplastic can cause adverse consequences on cephalopods, providing novel insights into the toxicological effect of microplastic exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.