Abstract

AbstractSodium fluorohectorite (FH) was dispersed in polystyrene (PS) by direct melt blending with and without a master batch composed of PS and FH and produced by latex compounding. FH was not intercalated by PS when it was prepared by direct melt compounding. In contrast, FH was well dispersed (mostly intercalated) in PS via the PS‐latex‐mediated predispersion of FH following the master‐batch route. The dispersion of FH was studied with transmission and scanning electron microscopy and X‐ray diffraction techniques and discussed. The nanocomposites produced by the master‐batch technique outperformed the directly melt‐compounded microcomposites with respect to stiffness, strength, and ductility according to dynamic mechanical analysis and static tensile tests. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.