Abstract

The co-assembly of peptides and proteins in poly(styrene-block-ethylene oxide) (PS-b-PEO) thin films has proven to be a promising method to fabricate polymer–biomolecule functional materials. Contrary to the covalent immobilization of biomolecules on surfaces, co-assembly presents the opportunity to arrange cargo within thin films, which can be released upon exposure to an aqueous environment. The use of a mixed solvent system ensures the solubilization of hydrophobic polymer as well as the solubilization and protection of the biomolecule cargo. However, to produce largely defect-free films of PS-b-PEO from a solvent mixture containing water is challenging due to the narrow range of solvent miscibility and polymer/protein solubility. This work explores the limits of using a benzene/methanol/water solvent mixture for the production of thin PS-b-PEO films and provides a template for the fabrication optimization of block copolymer thin films in different complex solvent systems. The film quality is analyzed using optical microscopy and atomic force microscopy and correlated to the solvent composition. By adjusting the solvent composition to 80/18.8/1.2 vol % benzene/methanol/water, it was possible to reliably fabricate thin films with less than 1% macroscopic defect surface coverage. Using the optimized solvent composition, we also demonstrate the fabrication of ordered PS-b-PEO films containing lysozyme. Furthermore, we show the release of lysozyme into aqueous media, which highlights the potential use of such films for drug delivery applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call