Abstract
Abstract Both surface morphology and surface energy of solid surface conclude its wettability, either in Wenzel’s hydrophobic or Cassie–Baxter’s superhydrophobic wetting state. The superhydrophobic silica coatings were prepared by spin deposition technique from a mixture of hydrophobically modified silica particles and polystyrene. To enhance the adherency of the coating on the substrate and also to improve the durability of the coating, polymer is especially utilized in the coating solution. The durability of the superhydrophobic coating was confirmed by resistency towards water jet impact. The consequence of number of spin deposited layers on the wettability of the coatings was precisely studied. The static and dynamic water contact angle of 158° and 9° were achieved on the coating surface. Freely rolling spherical water drops on the non-wettable solid surface are favourable for the self-cleaning effect and so the prepared superhydrophobic coatings revealed superior self-cleaning performance. An anti-corrosion performance of the superhydrophobic coating was also confirmed using electrochemical corrosion experiments in 3.5% NaCl solution with long immersion time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.