Abstract

Both n- and p-channel polysilicon TFTs can be fabricated, allowing CMOS circuit techniques to be used. However, TFT characteristics are poor in comparison to conventional single-crystal MOSFETs, and relatively coarse design rules must be used to be compatible with processing on large-area glass plates. The authors examine these issues and describe the performance of a range of digital and analog circuit elements built using polysilicon TFTs. Digital circuit speeds in excess of 20 MHz are reported, along with operational amplifiers with over 80 dB of gain and more than 1-MHz unity-gain frequency. Several polysilicon TFT switched-capacitor circuits are also reported and shown to have adequate linearity, output swing, and settling time to form integrated data line drivers on an active-matrix liquid crystal display. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.