Abstract

Unified random access memory (URAM) with a separated double-gate is demonstrated on a fully depleted polysilicon (poly-Si) thin-film-transistor (TFT) template. Integration of a front-gate dielectric of tunneling oxide/nitride/control oxide (O/N/O) and a floating poly-Si channel provides the two versatile functions of nonvolatile silicon oxide-nitride oxide-semiconductor Flash memory and high-speed capacitorless single-transistor 1T-DRAM in a single transistor. In this design, the memory mode of URAM is selected according to user specifications. As the back-channel is assigned for capacitorless 1T-DRAM while the front-channel is devoted for Flash memory, spatial separation minimizes undesired soft programming in the front O/N/O layer and allows for capacitorless 1T-DRAM operation irrespective of the data state of the nonvolatile memory. This feature presents interference-free operation between the two modes. In addition, the virtue of the TFT process allows the potential for stackable memory for ultra-high-density era.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call