Abstract

We demonstrate ultraviolet organic light-emitting diodes (OLEDs) with improved stability, low turn-on voltage and color purity by changing the cathode and annealing temperature of the polymer film. The electron injection process, which limits the electroluminescent performance of organic devices, has been enhanced tremendously by inserting a layer of LiF with appropriate thickness between the cathode and a poly( n-butylphenylsilane) (PS-4) layer, whose device structure is ITO/PEDOT:PSS/polysilane (PS-4)/LiF/Al. Devices with a LiF (6 Å) have the turn-on voltage of 4 V, which is lower than 7 V of devices made with Ca/Al layer. By inserting LiF as the anode interfacial layer, there is increase in the injection of electrons from Al (cathode) side due to tunneling effect and also act as hole blocking layer which enhance the recombination of electron and hole in the emissive layer. PS-4 is spin coated and annealed in vacuum for 1 h at different temperatures (90–120 °C). EL Spectra from these devices consists of white emission along with the UV peak. White emission is significantly suppressed when PS-4 is annealed at higher temperature and threshold voltage is lowest at 110 °C annealing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.