Abstract

Polysialic acid (polySia), consisting of α-(2,8)-linked N-acetylneuraminic acid monomers plays a crucial role in many biological processes. This study presents a novel process for the production of endogenous polySia using Escherichia coli K1 in a disposable bag reactor with wave-induced mixing. Disposable bag reactors provide easy and fast production in terms of regulatory requirements as GMP, flexibility, and can easily be adjusted to larger production capacities not only by scale up but also by parallelization. Due to the poor oxygen transfer rate compared to a stirred tank reactor, pure oxygen was added during the cultivation to avoid oxygen limitation. During the exponential growth phase the growth rate was 0.61 h-1. Investigation of stress-related product release from the cell surface showed no significant differences between the disposable bag reactor with wave-induced mixing and the stirred tank reactor. After batch cultivation a cell dry weight of 6.8 g L-1 and a polySia concentration of 245 mg L-1 were reached. The total protein concentration in the supernatant was 132 mg L-1. After efficient and time-saving downstream processing characterization of the final product showed a protein content of below 0.04 mgprotein/gpolySia and a maximal chain length of ∼90 degree of polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.