Abstract
Under chronic conditions of neuropathic pain, nociceptive C terminals are lost from their target region in spinal lamina II, leading to reduced thermal hyperalgesia. This region of the spinal cord expresses high levels of polysialic acid (PSA), a cell surface carbohydrate known to weaken cell-cell interactions and promote plasticity. Experimental removal of PSA from the spinal cord exacerbates hyperalgesia and results in retention of C terminals, whereas it has no effect on plasticity of touch Abeta fibers and allodynia. We propose that expression of PSA at this stress pathway relay point could serve to protect central circuitry from chronic sensory overload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.