Abstract

Multicomponent polymerizations (MCPs) have emerged as a powerful tool in the synthesis of advanced, sequence-regulated polymers based on their mild reaction conditions, ease of use, and high atom economy. Herein, we exploit MCP methodology to introduce elemental selenium into a polymer chain, accessing a unique polymer class,i.e., polyselenoureas. These polyselenoureas can be synthesized from a broad range of commercially available starting materials, in a simple ambient temperature one-step procedure. The incorporation of selenium directly into the polymer backbone provides a unique handle for polymer characterization based on the distinctive isotope profiles exposed by high-resolution mass spectrometry, along with diagnostic signals observed in infrared and X-ray photoelectron spectroscopies. In addition, diffusion ordered spectroscopy provides access to hydrodynamic diameter information on the generated unique polymer class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.