Abstract

Serial hemostatic sponges consisting of polysaccharides-modified chitosan foam sponges were prepared by Schiff base crosslinking reaction between the deacetylated chitosan and oxidized dialdehyde cellulose. Such composite foam sponges were characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy to confirm their morphology and compositions. Then the coagulation process was evaluated in vitro by thrombus elasticity meters. Furthermore, the hemostasis experiments on mouse tail vein and rabbit femoral artery were also performed in vivo. The results strongly indicated that such synergistic cellulose-modified chitosan foam sponges showed comprehensively excellent water-absorbing quality, improved mechanical performance, low hemolysis rates, benign cytotoxicity, good resilience ability after repeated compression, and superior hemostasis capability both in vitro and in vivo. Furthermore, the hemostatic mechanism is via adhering/activating the red blood cell/platelet to form robust blood clots through the endogenous coagulation pathway, which serves as a good candidate for emergency trauma treatment in daily civilian and military hemostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call