Abstract

The isothermal dehydration of aqueous biosystems is a relevant topic in food, pharmaceutical and cosmetic industry and has been recently investigated for the assessment of a model calorimetric set-up and for the characterization of the parameters featuring the experimental calorimetric curve.In this study, the experimental Differential Scanning Calorimetry (DSC) data obtained under controlled conditions in isothermal mode have been collected on the dehydration of films consisting of solutions and gels of alginate, hydroxypropylmethylcellulose (HPMC), trehalose and mixtures thereof. Based on the proportionality between the calorimetric heat flow and water activity (aw) of solutions of known aw, the values calculated from calorimetry have been compared to those obtained with classic hygrometric measurements revealing a good consistency between the methods. Furthermore, the experimental data were mathematically turned into desorption isotherms, providing a continuous description of the water activity down to the low water activity limit. This experimental method represents an innovative approach to support other consolidated analytical techniques in the physico-chemical characterization of aqueous systems and, more importantly, a step forward in the determination of water activity as a continuous measurement in a timeframe far shorter than that necessary with other instruments (e.g., hygrometers).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.