Abstract

Anti-infection hydrogels have recently aroused enormous attraction, particularly in the treatment of chronic wounds. Herein, silver nanoparticle@catechol formaldehyde resin microspheres (Ag@CFRs) were fabricated by one-step hydrothermal method and subsequently encapsulated in hydrogels which were developed by Schiff base reaction between aldehyde groups in oxidized hyaluronic acid and amino groups in carboxymethyl chitosan. The developed polysaccharide hydrogel exhibited microporous structure, high swelling capacity, favorable mechanical strength, enhanced tissue adhesion and photothermal activities. Additionally, the hydrogel not only ensured long-term and high-efficiency antibacterial performance (99.9 %) toward E. coli and S. aureus, but also realized superior cytocompatibility in vitro. Moreover, based on the triple antibacterial strategies endowed by chitosan, silver nanoparticles and the photothermal properties of catechol microspheres, the composite hydrogel exhibited excellent anti-infection function, significantly downregulated inflammatory factors (TNF-α and IL-1β) and promoted in vivo infected-wound healing. These results demonstrated that the polysaccharide hydrogel containing Ag@CFRs has great potential for infected-wounds repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call