Abstract

Brasenia schreberi (蓴菜 chún cài) is an invasive aquatic weed found in the USA, but the plant has economic value in Asia where it is cultivated for food. The young leaves of B. schreberi are coated with gelatinous water-insoluble mucilage. This mucilage is a polysaccharide composed of galactose, mannose, fucose, and other monosaccharides. Because some carbohydrate gels are hypocholesterolemic, we evaluated their cholesterol-lowering properties in male hamsters fed hypercholesterolemic diets containing 2% gel coat from B. schreberi (GEL), or 1% cholestyramine (CA), or 5% hydroxypropyl methylcellulose (HPMC), and compared them to 5% microcrystalline cellulose (control) for 3 weeks. We found that very-low-density lipoprotein-, low-density lipoprotein-, and total-cholesterol concentrations in plasma were significantly lowered by GEL, CA, and HPMC compared to control. High-density lipoprotein-cholesterol concentration was lowered by CA and HPMC. Body weights and abdominal adipose tissue weight of GEL and control group animals were greater than those of the CA and HPMC groups. Fecal lipid excretion was greater in the CA and HPMC groups than in the control group. Expression of hepatic CYP51 and CYP7A1 mRNA was upregulated by CA, HPMC, and GEL, indicating increased hepatic cholesterol and bile acid synthesis. Expression of low-density lipoprotein receptor mRNA was upregulated by all treatments. These results suggest that modulation of hepatic expression of cholesterol and bile acid metabolism-regulated genes contributes to the cholesterol-lowering effects of GEL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.