Abstract
Alfalfa polysaccharide (APS), a bioactive compound extracted from alfalfa, has been proposed to exhibit potential growth-promoting and immune-enhancing functions. But, little is known about the cellular immunomodulatory and intrinsic molecular mechanisms. Here we extracted the APS, and performed in vitro experiments to characterize the immunomodulatory functions as well as the molecular mechanisms of APS on RAW 264.7 macrophages cells. Chemical analyses showed that APS was mainly composed of fucose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid and glucuronic acid. The results of in vitro assays demonstrated that 50 and 100 μg/mL APS increased the cell viability of RAW 264.7 cells. The secretion and gene expression of NO/iNOS, IL-6 and TNF-α in APS-induced macrophage cell were significantly enhanced. However, APS-induced TNF-α production was decreased by blocking the MAPK or NF-κB signaling pathways, especially for the blockade of p38. Moreover, APS enhanced the phosphorylation of p38, ERK, and JNK, promoted the degradation of IκBα, and increased the nuclear translocation of NF-κB p65 subunit. Therefore, we demonstrated that APS could improve the immune functions of RAW 264.7 macrophages cells by promoting the cell viability and increasing secretion and gene expressions of NO/iNOS, IL-6 and TNF-α through the MAPK and NF-κB signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.