Abstract

Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.

Highlights

  • This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, focusing on protein-protein interactions and the formation of multiprotein complexes

  • Studies from our group using bimolecular fluorescence complementation (BiFC) assays combined with flow cytometry, immunoprecipitation, and in vitro pull-down assays showed that the protein Cellulose Synthase Like C4 (CSLC4), which synthesizes the glucan backbone in xyloglucan, and six other proteins [three xyloglucan xylosyltransferases (XXT1, XXT2, and XXT5), two galactosyltransferases (MUR3 and XLT2), and fucosyltransferase (FUT1)] involved in the synthesis of side chains in xyloglucan form homodimers and heterocomplexes (Chou et al, 2012, 2015; Lund et al, 2015)

  • We have presented the current state of knowledge about plant polysaccharide-synthesizing GTs and the most recent findings on their organization in multiprotein complexes that are required to form the highly branched structures of heteropolysaccharides

Read more

Summary

Introduction

This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, focusing on protein-protein interactions and the formation of multiprotein complexes. Other GTs involved in cell wall polysaccharide biosynthesis are type II membrane proteins and reside in the Golgi (Driouich et al, 2012; Sogaard et al, 2012; Parsons et al, 2019).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call