Abstract
Automatic systolic array generation has long been an interesting topic due to the need to reduce the lengthy development cycles of manual designs. Existing automatic systolic array generation approach builds dependency graphs from algorithms, and iteratively maps computation nodes in the graph into processing elements (PEs) with time stamps that specify the sequences of nodes that operate within the PE. There are a number of previous works that implemented the idea and generated designs for ASICs. However, all of these works relied on human intervention and usually generated inferior designs compared to manual designs. In this work, we present our ongoing compilation framework named PolySA which leverages the power of the polyhedral model to achieve the end-to-end compilation for systolic array architecture on FPGAs. PolySA is the first fully automated compilation framework for generating high-performance systolic array architectures on the FPGA leveraging recent advances in high-level synthesis. We demonstrate PolySA on two key applications---matrix multiplication and convolutional neural network. PolySA is able to generate optimal designs within one hour with performance comparable to state-of-the-art manual designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.