Abstract

Asymmetric supercapacitors (ASCs) show promising potential for electrochemical energy storage applications. However, the energy density of ASCs is limited by the poor electrochemical performance of anodes. To achieve high-performance ASCs, herein, Fe2O3 nanotubes constructed from Fe2O3 nanoneedles were fabricated by employing MnO2 nanotubes as a self-sacrificing template, and then a layer of polypyrrole (PPy) was coated through an in situ chemical oxidative polymerization method to enhance their performance. The electrochemical tests indicate that the resultant PPy-coated Fe2O3 nanotubes (Fe2O3@PPy) exhibit a high areal capacitance of 530 mF cm-2 at 1 mA cm-2 and good cycling stability, which are superior to those of the Fe2O3 nanotubes. The superior performance of the Fe2O3@PPy nanotubes can be attributed to the synergistic effect between the PPy shell and Fe2O3 core, in which the conducting PPy shell not only works as a superhighway for charge transport, but also stabilizes the Fe2O3 nanotubes during charge-discharge processes. When the Fe2O3@PPy nanotubes were assembled with MnO2 nanotubes, the as-assembled ASCs possess a high cell voltage of 2.0 V and deliver a high energy density of up to 51.2 Wh kg-1 at a power density of 285.4 W kg-1 with an excellent cycling stability (83.5% capacitance retention over 5000 cycles).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call