Abstract
Conducting-polymer-based electrical percolation networks are promising materials for use in high-sensitivity chemiresistive devices. An ongoing challenge is to create percolation networks that have consistent properties, so that devices based on these materials do not have to be individually calibrated. Here, an in situ conductance technique is used during the electrochemical growth of polypyrrole (PPy) percolation networks. The drain current (id) across the interdigitated electrodes (IDEs) is a measure of the conductance of the PPy network during electrochemical polymerization. The id curve is used to determine the percolation region. To improve the reproducibility of PPy percolation networks, an in situ conductance monitoring method based on the value of id is used. A set of optimal ammonia gas percolation sensors was created using this method with an average sensitivity of ΔR/R0 × 100% ppm–1 = 11.3 ± 1.2% ppm–1 and an average limit of detection of 15.0 ± 3.6 ppb.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.