Abstract

Purpose – The paper aims to discuss the evaluation of anti-corrosive efficiency of conducting polymer, polypyrrole in water borne epoxy-polyamine coatings. Design/methodology/approach – Polypyrrole (PPy) is synthesised by chemical oxidative polymerisation. The synthesised PPy is characterised by employing FT-IR, XRD, SEM and EDX analysis. The coatings are formulated using water borne epoxy cross-linked with aliphatic polyamine adduct and the effect of PPy on corrosion prevention is studied. PPy was used as anti-corrosive pigment in concentration varying from 1 to 5 wt.%. In addition to anti-corrosive property; mechanical properties, chemical resistance and weathering properties of the coatings containing PPy are studied, thereby obtaining a wholesome data about the quality and performance of these coatings. Findings – The result obtained through various tests showed that the coating with 1 and 2% PPy exhibited excellent weathering resistance, mechanical properties and improved chemical resistance. Higher percentage loading of PPy (beyond 3 per cent) proves to be disastrous, as extended percolation networks are formed which results in rapid intense corrosion leading to fast coating breakdown. Research limitations/implications – The anti-corrosion property of the coating can be tested by means of atmospheric exposure such as Florida test which produces a real time evaluation of the anti-corrosive nature of the coating at natural condition rather than accelerated weathering, thereby providing more reliable performance data for intended application purpose. Practical implications – The results find application in anti-corrosive/performance paints for industrial application. Originality/value – This research paper presents the results of anti-corrosion behaviour of PPy in water borne epoxy-polyamide coating. Based on this result, a highly effective anti-corrosive coating can be formulated by the addition of small percentage of PPy in combination with other conventional pigments, thereby enhancing corrosion protection. But care must be taken so as to avoid formation of extended percolation network of PPy which leads to rapid coating breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.