Abstract

A cobalt oxide graphene nanocomposite functionalized with polypyrrole (COPYGO) having a heterogenous porous structure was synthesized using hydrothermal method. Microscopic imaging of the COPYGO surface revealed its highly porous and ordered features. The adsorption performance of the COPYGO composite was systemically investigated for Methylene Blue (MB), Congo red (CR) dyes and toxic lead (Pb(II)) and Cadmium (Cd(II)) metals. These were selected as they are the common pollutants in industrial wastewater. The COPYGO was found to be thermally stable up to 195 oC with a specific surface area of 133 m2 g−1. Experimental data indicates that the COPYGO follows Langmuir and Temkin adsorption isotherm. The COPYGO was efficient in removing MB (92.8%), CR (92.2%), Pb(II) (93.08%) and Cd(II) (95.28%) pollutants at pH 7.2, 5.0, 5.5 and 6.1 respectively from the simulated effluents. The maximum adsorption capacity (Qmax) observed for MB 663.018 mg g-1, CR 659.056 mg g-1, Pb(II) 780.363 mg g−1 and Cd(II) 794.188 mg g−1 pollutants. The thermodynamic analysis of the COPYGO indicates that the adsorption is endothermic and spontaneous in nature. COPYGO showed very high efficient removal rate for the pollutants in simulated effluents which guaranteed its benefits and efficacy in industrial wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.