Abstract

The authors describe a new sorbent for amitraz and teflubenzuron pesticides. It consists of a platinum wire coated with polypyrrole-coated ZnO nanorods. The nanocomposite was prepared by a two-step process. In the first step, oriented ZnO nanorods were hydrothermally grown in situ on a platinum wire. Subsequently, oxidative vapor phase polymerization of pyrrole was performed on FeCl3-impregnated ZnO nanorods to give a porous polypyrrole film. The organic/inorganic nanocomposite synthesized through hydrothermal deposition and chemical vapor deposition polymerization yields material with attractive properties. The coated wire was applied to solid-phase microextraction of amitraz (in the form of 2,4-dimethylaniline resulting from the hydrolysis of amitraz) and teflubenzuron. The effects of extraction temperature, extraction time, sample pH value and salt concentration were optimized. The analytes 2,4-dimethylaniline and teflubenzuron were then quantified by GC-MS. Under optimum conditions, the LODs range between 0.1 and 0.15ng.mL-1. Relative standard deviations at two concentration are <8.3% for intraday precision and <10.3% for inter-day precision. In all cases, the fiber to fiber reproducibility is <12.2%. For both analytes the linear dynamic ranges are 0.5-300ng.mL-1. The procedure was successfully applied to the analysis of spiked agricultural water samples. Graphical abstract A novel inorganic/organic hybrid nanocomposite was synthesized through in situ hydrothermal deposition of ZnO nanorods and ten placing a thin layer of polypyrrole on them by chemical vapor deposition polymerization. This nanocomposite was applied to fabricate a solid-phase microextraction fiber for the extraction of amitraz and teflubenzuron pesticides residue from agricultural samplesprior to their quantitation by GC-MS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.