Abstract

Electrically conductive nanofibrous meshes composed of polypyrrole, polycaprolactone and gelatin construct using a two-step approach including electrospinning and in situ polymerization. Nanometer-scale thick polypyrrole (PPy) is grown on the surface of electrospun polycaprolactone-gelatin (PCL-Gel) nanofiber by in situ chemical polymerization. Different PCL-to-gel ratios and fiber orientations are employed to construct template scaffolds for the coating reaction. SEM analysis indicates the fiber diameter of 162–207 nm and the coating thickness of 30–93 nm. Porosity estimation confirms conservation of total porosity in the coated mats. ATR-FTIR of the composite reveals that functional groups of all three polymers partially exist on the surface. Furthermore, XRD analysis verifies the crystalline nature of the hybrid scaffold. High electrical conductivity (4.6–5.8 S/cm) and convenient mechanical properties of the coated membranes are further achieved. The collective information of the current investigation introduces suitable potential candidates for diverse biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.