Abstract

In this study, a facile and environmentally friendly method was used to prepare a freestanding supercapacitor electrode displaying excellent areal capacitance and good cycle life performance. First, we prepared polypyrrole nanoparticles (PPyNP) through a simple in situ chemical polymerization using the plant-derived material curcumin as a bioavailable template. A PPyNP/f-CNT freestanding composite electrode of high mass loading (ca. 14 mg cm–2) was prepared after blending the mixtures of the prepared PPyNP and functionalized CNTs (f-CNTs). The performance of the as-prepared material as a supercapacitor electrode was evaluated in a three-electrode setup using aqueous 1 M H2SO4 as the electrolyte. The PPyNP/f-CNT freestanding composite electrode exhibited a high areal capacitance of 4585 mF cm–2 and a corresponding volumetric capacitance of 176.35 F cm–3 at a current density of 2 mA cm–2. A symmetric all-solid-state supercapacitor assembled using two identical pieces of PPyNP/f-CNT composite electrodes exhibited maximum areal energy and power density of 129.24 μW h cm–2 and 12.5 mW cm–2, respectively. Besides, this supercapacitor device exhibited good cycle life performance, with 79.03% capacitance retention after 10,000 charge/discharge cycles. These results suggest practical applications for these PPyNP/f-CNT freestanding composite electrode-based symmetric all-solid-state supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.