Abstract

IVS1, an intron derived from the rat fibronectin gene, is spliced inefficiently in vitro, involving the use of three alternative branch sites. Mutation of one branch point site, BP3, so as to increase complementarity to U2 snRNA resulted in exclusive use of that site and improved splicing efficiency, indicating that the wild type BP3 site is one determinant of poor IVS1 splicing. Deletions within the polypyrimidine tract had a variable effect on splicing efficiency and altered the pattern of branch site usage. Selection of each branch site was influenced negatively by purine substitutions ca. 20 nucleotides downstream. It is proposed that all three IVS1 branch sites are pyrimidine tract-dependent. Pyrimidine tract deletions also influenced the crosslinking of PTB (the polypyrimidine tract-binding protein), hnRNP C, and splicing factor U2AF65. All three proteins bound preferentially to distinct regions within the polypyrimidine tract and thus are candidates for mediating pyrimidine tract-dependent branch site selection. The findings indicate the complexity of the IVS1 polypyrimidine tract and suggest a crucial role for this region in modulating branch site selection and IVS1 splicing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.