Abstract

Automatic polyp segmentation from colonoscopy videos is a prerequisite for the development of a computer-assisted colon cancer examination and diagnosis system. However, it remains a very challenging task owing to the large variation of polyps, the low contrast between polyps and background, and the blurring boundaries of polyps. More importantly, real-time performance is a necessity of this task, as it is anticipated that the segmented results can be immediately presented to the doctor during the colonoscopy intervention for his/her prompt decision and action. It is difficult to develop a model with powerful representation capability, yielding satisfactory segmentation results and, simultaneously, maintaining real-time performance. In this article, we present a novel lightweight context-aware network, namely, PolypSeg+, attempting to capture distinguishable features of polyps without increasing network complexity and sacrificing time performance. To achieve this, a set of novel lightweight techniques is developed and integrated into the proposed PolypSeg+, including an adaptive scale context (ASC) module equipped with a lightweight attention mechanism to tackle the large-scale variation of polyps, an efficient global context (EGC) module to promote the fusion of low-level and high-level features by excluding background noise and preserving boundary details, and a lightweight feature pyramid fusion (FPF) module to further refine the features extracted from the ASC and EGC. We extensively evaluate the proposed PolypSeg+ on two famous public available datasets for the polyp segmentation task: 1) Kvasir-SEG and 2) CVC-Endoscenestill. The experimental results demonstrate that our PolypSeg+ consistently outperforms other state-of-the-art networks by achieving better segmentation accuracy in much less running time. The code is available at https://github.com/szu-zzb/polypsegplus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.