Abstract

Antimicrobial nanocomposites prepared with polypropylene, montmorillonite, and nisin were developed as food packaging material. Nisin was incorporated at 1, 2.5, and 5 % (w/w) and the characterization included antimicrobial, mechanical, thermal, barrier, and structural properties. Composite films inhibited the Gram-positive bacteria Listeria monocytogenes, Staphylococcus aureus, and Clostridium perfringens when tested on skimmed milk agar plates. Antimicrobial activity was released in food simulants after contact with the nanocomposites, increasing until 48 h in solutions containing the surfactant Tween 20 or acetic acid. The addition of nisin caused no significant modification in deformation at break values as compared with control films. However, results of tensile strength and Young modulus differed significantly among samples. The higher value for Young modulus was observed for films with 5 % nisin. Water vapor barrier properties were not significantly different among control and antimicrobial films, whereas oxygen permeability was higher for nanocomposites containing nisin. The nanocomposites tested had no significant differences in the melting temperature (165 to 167 °C), and the crystallization temperature ranged from 121 to 129 °C, with lower values for films containing 5 % nisin. Scanning electron microscopy showed that nanocomposites containing 1 and 2.5 % nisin present similar homogeneity to that of control films. Some film properties were affected after nisin incorporation in polypropylene/montmorillonite matrix but active antimicrobial films were obtained, showing suitable behavior as a food packaging material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.